

Welcome to AGWB’s documentation!

Contents:

	Overview
	Local bus

	Allocation of adresses

	Input

	Output products

	License

	Installation and usage
	AGWB and FuseSoc

	XML description
	Why XML?

	Valid Elements
	blackbox

	block

	constant

	creg

	field

	include

	sreg

	subblock

	sysdef

	Math within attribute value

	Notes
	reps attribute

	ignore attribute

	variants

	VHDL
	Conversion functions

	Python
	Register interface

	Example

Indices and tables

	Index

	Module Index

	Search Page

Overview

Address Generator for WishBone (AGWB) is a tool for automatic management of local bus address space in complex FPGA systems.
Its main advantage, comparing to other open source solutions, is the support for complex hierarchical systems.
Fig. 1 shows an example of a hierarchical system.

[image: Example of a hierarchical system.]

Fig. 1 The block diagram of an example design built in the FPGA using the AGWB.
The CDC block provides the clock domain crossing functionality.
It allows subblocks D and D_E to run with another clock than the rest of the system.

Local bus

As the local control bus, the Wishbone bus was chosen.
It is used in the classic single mode.
In this mode, it may control both the Wishbone and IPbus slaves, which gives access to multiple open IP cores.
It is possible to control the local bus from the IPbus master.
Additionally, there are bridges providing control of the Wishbone bus from other busses like Avalon or AXI.
Therefore, such selection of local bus ensures high versatility and flexibility of the created control infrastructure, which is desirable, even though it provides lower performance than pure AXI bus.

Allocation of adresses

To enable optimal implementation of address decoders the address space for each block requiring the K addresses, where \(0 < K < 2^N\) is aligned to the \(2^N\) boundary so that N bits are used for internal addressing in the block.
To ensure efficient utilization of the address space, the required size of the address space for each block is calculated, traversing the system description from the most nested blocks to the top.
After that, the blocks are ordered in the order of decreasing size of their address space, and their base addresses are set with the proper alignment.

Input

As an input AGWB accepts system registers structure described in .xml format.
This is further described in XML description chapter.

Output products

AGWB always generates VHDL files appropriate to the defined blocks.
User should expect following VHDL files to be generated.

	{top_name}_const_pkg.vhd - package with constants defined in input .xml files.

	{block_name}_pkg.vhd - package for given block.
Packages for distinct blocks are generated into distinct files.
These packages contain various constants, subtypes, types definitions and conversion functions related to given block.

	{block_name}.vhd - entity for given block.
Entities for distinct blocks are generated into distinct files.

Depending on the input arguments AGWB can also generate following helper files.

	IPbus compatible register files.

	C header files for ???.

	Python files for ???.

	Forth files for ???.

	HTML registers documentation file.

To get to know how to generate these files execute python addr_gen_wb.py --help.

License

The code is licensed under GPL v2 license.
The generated code is free, and you can freely use it in your design.

Installation and usage

AGWB is not installable from PyPI via pip.
To be able to use AGWB you have to clone the repository from https://github.com/wzab/addr_gen_wb and use src/addr_gen_wb.py in a script way.

Although AGWB is not installable from PyPI via pip it is possible to install some parts of it.
Namely, the agwb Python package, which can be used for interaction with flashed FPGAs or simulation purposes.
To install the package execute the following command in the repository root directory.

python setup.py install --user

AGWB and FuseSoc

AGWB can be used as a FuseSoc (https://github.com/olofk/fusesoc) generator.
Following snippet from .core file can serve as an example.

CAPI=2:

Choose whatever name you want.
If you have only single AGWB description of the system
within your design, then it is good to use 'agwb' name.
name: ::agwb

filesets:
 agwb_dep:
 depend:
 - wzab::addr_gen_wb

targets:
 default:
 generate:
 - agwb_regs
 filesets:
 - agwb_dep

generate:
 agwb_regs:
 generator: addr_gen_wb
 parameters:
 infile: top.xml
 # hdl parameter is optional. If you don't provide it
 # VHDL files will be generated to the FuseSoc cache directory.
 hdl: ./optional/relative/path/for/generated/vhdl/files
 # Below commented parameters are programming language specific
 # and are also optional. Unlike 'hdl' parameter, if they are not
 # provided particular files will not be generated.
 # Paths for generated output files in all below parameters are relative.
 # header: c_headers/destination
 # html: html/destination
 # ipbus: ipbus_outputs/destination
 # python: python_raw/destination
 # fs: Forth_outputs/destination

XML description

AGWB uses XML as file format for describing system registers.
There are predefined element names, that must be used for valid description.
Each element requires at least one mandatory attribute and may accept some optional attributes.

Why XML?

You may be wondering why XML, why not someting more buzzy like JSON or YAML.
Well, XML has something, that is particularly useful for describing hierarchical systems that neither JSON nor YAML have.
Namely, it distinguishes block attributes and elements.
Attributes function like a metadata of a block and elements are independent entities existing within outter element/block.
With JSON or YAML one would have to imitate this structure and it would feel somehow less intuitive.
JSON also does not support comments, and with YAML it is a bit harder to spot indentation mistakes in long blocks.

Valid Elements

blackbox

blackbox element can be used for incorporating registers or blocks not generated by the AGWB.

Mandatory attributes:

	name - name of the blackbox instance within outter block.

	type - type of the blackbox.

	addrbits - number of lower address bits used by blackbox for internal addressing.

Optional attributes:

	desc - Text describing the block

	reps - Number (or semicolon separated list of numbers, if you use variants) defining the number of repetitions (may contain “0” if in certain variant the block is not used). Presence of this attribute enforces implementation as the vector of blocks (even if the length 1 or 0).

	used - Number (or semicolon separated list of numbers, if you use variants) defining if the block is used (‘1’) or not used (‘0’). Other values are prohibited. This attribute replaces reps for objects that should not be converted into vectors.

	xmlpath - relative path to .xml file with registers not generated by the AGWB.

block

block element is used for grouping registers or other blocks.

Mandatory attribute:

	name - name of the block.

#. name -
Optional attributes:
#. aggr_outs - If set to one, all outputs of the block are aggregated into a single output named out_regs. That functionality is useful, if you need to route the output of the block to another VHDL entity (you route a single record signal instead of multiple signals).
#. reserved - This optional argument reserves certain number of words at the begining of the address space.
#. testdev_ena - If this attribute is set to the true (non-zero) value, it enables generation of a test device at the begining of the address space of the block.
#. desc - Text describing the block
#. ignore - This attribute informs that this block, and all its children should be ignored in certain backend. Currently only the ‘forth’ value has a meaning. It protects the Forth vocabulary against the overflow by multiple names that are not going to be used by the Forth CPU. The value may be overriden by ignore argument in a subblock or a child.

Example

<block name="top">
 <blackbox name="EXTHUGE" type="HTEST" addrbits="16" />
 <subblock name="LINKS" type="SYS1" reps="NSEL_MAX"/>
 <creg name="CTRL" desc="Control register in the top block" default="0x11">
 <field name="CLK_FREQ" width="4"/>
 <field name="PLL_RESET" width="1"/>
 </creg>
</block>

creg can contain field elements, see field.

constant

constant allows for definig constant number, which can later be used for parameterizing registers or blocks.

Mandatory attributes:

	name - name of the constant.

	val- value of the constant.

	desc - extra description of the constant.

Example

<constant name="NUMBER_OF_BITS" val="3" />

creg

creg stands for control register and should be used to describe registers that are supposed to be both written and read by the software.

Mandatory attribute:

	name - name of the control register.

Optional attributes:

	default - default value stored in the register, this value is also applied after reset.

	desc - extra description of the control register.

	mode - special attribute, directly passed to the generated IPbus XML file.

	reps - Number (or semicolon separated list of numbers, if you use variants) defining the number of repetitions (may contain “0” if in certain variant the block is not used). Presence of this attribute enforces implementation as the vector of registers (even if the length 1 or 0).

	used - Number (or semicolon separated list of numbers, if you use variants) defining if the register is used (‘1’) or not used (‘0’). Other values are prohibited. This attribute replaces reps for objects that should not be converted into vectors.

	stb - setting this to 1 enables the stb signal, that is asserted for one clock pulse whenever the new value is written. Useful for FIFO write.

	stype - Allows the user to define non-standard type name for the register. Otherwise the type is obtained from the register name, which may lead to collisions in the HDL namespace (if two blocks, have registers with the same name, but with different fields, width, or other properties).

	type - type of the register. The default value is ‘std_logic_vector’. May be also seto to ‘signed’ or ‘unsigned’.

	width - width of the register in bits.

	ignore - This attribute informs that this register, and all its fields should be ignored in certain backend. Currently only the ‘forth’ value has a meaning. It protects the Forth vocabulary against the overflow by multiple names that are not going to be used by the Forth CPU. The value may be overriden by ignore argument in a field.

field

field element is used to define bit fields within register.

Mandatory attributes:

	name - name of the field.

	width - width of the field in bits.

Optional attribute:

	type - type of the bit field. The default value is ‘std_logic_vector’. May be also seto to ‘signed’ or ‘unsigned’.

	desc - description of the bit field.

	default - defaut value of the bit field.

	ignore - This attribute informs that this field. Currently only the ‘forth’ value has a meaning. It protects the Forth vocabulary against the overflow by multiple names that are not going to be used by the Forth CPU.

	trigger - This attribute if set to true, informs that this field is a ‘trigger’. It means, that if written, the written value is available only for one clock period. It is always read as zero. The ‘trigger’ fields should be used for launching certain actions in the hardware.

Example

<sreg name="throughput">
 <field name="val" width="30" type="unsigned" />
 <field name="prev_missed" width="1" />
 <field name="read" width="1" />
</sreg>

include

include element allows including .xml files.
This is very useful functionality, as different modules can be placed in different repositories and reused in different projects.
Each module (entity) can have its own .xml file with block definition related strictly to this module.

Example

<include path="relative/path/to/block.xml"/>

sreg

sreg stands for status register and should be used to describe registers that are supposed to be read only by software.

Mandatory attribute:

	name - name of the status register.

Optional attributes:

	ack - setting this to 1 enables the ack signal, that is asserted for one clock pulse when the value is read.

	desc - extra description of the register.

	mode - special attribute, directly passed to the generated IPbus XML file.

	reps - Number (or semicolon separated list of numbers, if you use variants) defining the number of repetitions (may contain “0” if in certain variant the block is not used). Presence of this attribute enforces implementation as the vector of registers (even if the length 1 or 0).

	used - Number (or semicolon separated list of numbers, if you use variants) defining if the register is used (‘1’) or not used (‘0’). Other values are prohibited. This attribute replaces reps for objects that should not be converted into vectors.

	stype - Allows the user to define non-standard type name for the register. Otherwise the type is obtained from the register name, which may lead to collisions in the HDL namespace (if two blocks, have registers with the same name, but with different fields, width, or other properties).

	type - type of the register. The default value is ‘std_logic_vector’. May be also seto to ‘signed’ or ‘unsigned’.

	width - width of the register in bits.

	ignore - This attribute informs that this register, and all its fields should be ignored in certain backend. Currently only the ‘forth’ value has a meaning. It protects the Forth vocabulary against the overflow by multiple names that are not going to be used by the Forth CPU. The value may be overriden by ignore argument in a field.

Example

<sreg name="my_reg" ack="1" default="0x0" desc="Some diagnostic registers." reps="8" width="16" />

sreg can contain field elements, see field.

subblock

subblock element is used to include some block into another block.

Mandatory attributes:

	name- name of the subblock instance within outter block.

	type- type of the subblock.
This is name of the subblock definition.

Optional attributes:

	desc - extra description of the subblock.

	ignore - This attribute informs that this register, and all its fields should be ignored in certain backend. Currently only the ‘forth’ value has a meaning. It protects the Forth vocabulary against the overflow by multiple names that are not going to be used by the Forth CPU. The value may be overriden by ignore argument in a field.

	reps - Number (or semicolon separated list of numbers, if you use variants) defining the number of repetitions (may contain “0” if in certain variant the block is not used). Presence of this attribute enforces implementation as the vector of registers (even if the length 1 or 0).

	used - Number (or semicolon separated list of numbers, if you use variants) defining if the register is used (‘1’) or not used (‘0’). Other values are prohibited. This attribute replaces reps for objects that should not be converted into vectors.

Example

<block name="data_processing">
 <creg name="enable" width="1" />
 <sreg name="throughput" reps="9" ack="1">
 <field name="val" type="unsigned" width="30" />
 <field name="prev_missed" width="1" />
 <field name="read" width="1" />
 </sreg>
</block>

<block name="wfifo">
 <creg name="data" mode="non-incremental" stb="1" />
 <sreg name="unused" ack="1" type="unsigned" />
 <sreg name="valid_writes" type="unsigned" />
</block>

<block name="main">
 <subblock name="write_fifo" type="wfifo" desc="Some extra description." />
 <subblock name="dproc" type="data_processing" reps="2" />
</block>

sysdef

sysdef must be a root element.

Mandatory attribute:

	top - designates the block which should be used as a top level for registers generation.

Optional attribute:

	masters - number of Wishbone masters controlling the local bus (default value is 1).

Example

<sysdef top="foo" masters="2">
 <block name="foo">
 ...
 </block>

 <block name="bar">
 ...
 </block>
</sysdef>

Math within attribute value

The attribute values may be specified as a valid Python number, ar as a valid Python expression.
The expressions are evaluated using the code based on https://stackoverflow.com/a/30516254/1735409 .
Therefore, only certain subset of Python functions are available.
The expression make make use of the constants defined in the system description XML.
However, one must be aware, that as epxressions are stored in the XML file, so certain characters mas be escaped:

& with &
< with <
> with >
" with "

That may affect legibility of certain expressions.
For example the expression:
1 << ADDRWIDTH must be written as 1 << ADDRWIDTH

Notes

reps attribute

The reps attribute is used for defining vectors of blocks/registers.
It enforces the implementation of the particular instance to be treated as a vector even if the value equals 1 or 0.
This is useful for parametrized designs, when sometimes the parameter describing the number of implemented blocks or registers may equal 1, and sometimes may equal value greater than 1.
With such approach implemented codes are very flexible and need no modification.

ignore attribute

The ignore attribute is used for ignoring generation of definitions for certain blocks for particular backends.
The atribute may be specified either in the definition of the block (igoring all its instances) or in the instantiation of the block, or in the definition of a register.
Currently ignore attribute has effect only in case of Forth backend.
It is possible to extend that functionality to other backends.

Example

<block name="my_block">
 <subblock name="links" type="sys1" reps="N_SEL_MAX" ignore="forth"/>
 <subblock name="olinks" type="sys1"/>
</block>

variants

To be described. At the moment, please look at https://github.com/wzab/agwb/wiki/Multiple-AGWB-trees for information about the reason for introducing the variants.

VHDL

AGWB generates VHDL files appropriate to the defined blocks (see Output products).
When AGWB is used as a FuseSoc generator all auto generated VHDL files are put into separate agwb library.
If user generates code using script directly (without FuseSoc), the generated files can be put into any library.
However, it is recommended to always put auto generated VHDL files into dedicatd agwb library, even if FuseSoc is not used.
This makes the design more readable and facilitates the maintenance.

Conversion functions

In VHDL there is often a need to convert objects to different types.
AGWB automatically generates functions for converting to std_logic_vector and custom types defined in .xml files.

Example

Assume there is following block defined in the .xml file.

<block name="my_block">
 <creg name="my_creg">
 <field name="field_1" width="5"/>
 <field name="field_2" width="3"/>
 </creg>
</block>

Then following declarations and definitions will be automatically generated and available in the my_block_pkg.vhd file.

type t_my_creg is record
 field_1 : std_logic_vector(4 downto 0);
 field_2 : std_logic_vector(2 downto 0);
end record;

function to_my_creg(x : std_logic_vector) return t_my_creg;
function to_slv(x : t_my_creg) return std_logic_vector;

-- Definitions from the package body.
function to_my_creg(x : std_logic_vector) return t_my_creg is
variable res : t_my_creg;
begin
 res.field_1 := std_logic_vector(x(4 downto 0));
 res.field_2 := std_logic_vector(x(7 downto 5));
 return res;
end function;

function to_slv(x : t_sx_mask_enc_mode) return std_logic_vector is
variable res : std_logic_vector(7 downto 0);
begin
 res(4 downto 0) := std_logic_vector(x.field_1);
 res(7 downto 5) := std_logic_vector(x.field_2);
 return res;
end function;

Python

If --python argument is specified, AGWB generates special agwb package, which can be used for simulation or interaction with real hardware.
To be able to import the package it must be in the path.
It is left for the user how it is achieved.

The hardware-related structure of blocks and registers is represented as a nested structure of proper classes and attributes.
The details are well abstracted from the user.
Accessing a register feels exactly the same as accessing regular Python class attributes.
Assume there is top block, which contains foo subblock, which containts bar status register.
After instantiating the top class reading the bar register can be simply done with top.foo.bar.read().

Register interface

Currently register interface supports following methods:

	read().

	read_fifo(count) - read register count times.

	write(value).

	write_fifo(values) - write register with values, where values is a list.

Both read_fifo and write_fifo are useful not only for interacting with real FIFOs.
For example, write_fifo([1,0]) is a concise way for resetting modules (assuming required pulse width on a reset port can be shorter than single write operation within the FPGA).

Example

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to AGWB’s documentation!

 		
 Overview

 		
 Local bus

 		
 Allocation of adresses

 		
 Input

 		
 Output products

 		
 License

 		
 Installation and usage

 		
 AGWB and FuseSoc

 		
 XML description

 		
 Why XML?

 		
 Valid Elements

 		
 blackbox

 		
 block

 		
 constant

 		
 creg

 		
 field

 		
 include

 		
 sreg

 		
 subblock

 		
 sysdef

 		
 Math within attribute value

 		
 Notes

 		
 reps attribute

 		
 ignore attribute

 		
 variants

 		
 VHDL

 		
 Conversion functions

 		
 Python

 		
 Register interface

 		
 Example

_static/plus.png

_static/file.png

_static/minus.png

_images/example_hierarchical_system.png
The whole system implemented in FPGA

N
IPbus
WB master)

JTAG
WB master

rl

Local WB
Node

Subbloc

Subblock D

Reg D1
[

Reg D10

kD _E

Local WB
Node

RegD_E_1

[-]

Reg D_E_11

Local WB —’| Reg Al
Node
Reg A2

Subblock B

Local WB
Node

Subblock C1

Local WB
Node

Subblock C2

Local WB Reg C2_1
Node

I.]

